ELSP MATHEMATICS YR 5

What is it that we want our students to know, understand, do and communicate KUDCO?

<table>
<thead>
<tr>
<th>Year Level: Five</th>
<th>Semester: Two</th>
<th>Subject: Mathematics</th>
<th>Team Members: Linda Turner, Brad Morin & Tom Penberthy</th>
</tr>
</thead>
</table>

Essential Learning
What is the essential learning? Describe in student friendly vocabulary.

Example-Rigor
What does proficient student work look like? Provide an example and/or description.

Prior Skills Needed
What prior knowledge, skills and/or vocabulary are needed for a student to master this essential learning?

Common Assessments
What assessment/s will be used to measure student mastery?

When taught?
When will this essential learning be taught?

Extension/application Skills
What will we do when students have already learned this essential learning?

Learning Target:
I can:
- multiply a three digit number by one or two digits.
- divide a three digit number by a one digit number, including those that result in a remainder.
- estimate as a strategy to check the reasonableness of my answer.
- I can explain and justify my answer.

| I can solve multiplication and division problems using the most efficient strategy. |
| I can solve multiplication and division problems using the most efficient strategy. |
| Arrays |
| Known facts |
| Factors and Multiples |
| Parts and Wholes |
| Times tables |

Multiplication Strategy Checklist.

- Explain how you check your working out and answer:

 - CFA’s as determined by the team and by intervention teachers as per need. (ACARA examples)
 - One overall open-ended task

Term Three Week, 3, 4 and 5 Multiplication

- Term Three Week, 6, 7, 8, Post test week 9.
- Revision and application week 10

Division

- Solve more complex multi-step multiplication and division problems.
- Explain and apply the inverse relationship between multiplication and division and use this to prove accuracy of answers.

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE = Number and Algebra, **RED** = Measurement and Geometry, **GREEN** = Statistics and Probability.
strategies and calculations.
- use a calculator to check the reasonableness of my answers

● I can apply the associative, commutative and distributive laws to aid mental and written computation

For example:
- build on known facts
- grid
- partitioning (hundreds, tens, ones)
- distributive law
- rule of zero

Multiplication Strategy Checklist.

Division:
I can use progressive continuum to determine the most efficient strategy

Division Strategy Checklist.

- Fact families: (prior knowledge of multiplication and known facts)
- Part, Part, Whole:

- Long but forgiving:
Start with what you know (10s, 5s, 2s).
For example: I know 10 x 60s = 600, and 1 x 60 = 660 and that’s 11 lots of 60. So, 660/10 = 11.
- Partitioning (hundreds, tens, ones)

Post test as per students pre tests at the start of term.

Developed by the team.

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE= Number and Algebra, **RED**= Measurement and Geometry, **GREEN**= Statistics and Probability.
ELSP MATHEMATICS YR 5

| I can solve problems by identifying factors and multiples of a whole. | Problem Solving Strategies - Tool Box | I can solve a variety of different worded problems For example: You are given the whole and need to find the factors/parts. Or, You are given the factors/parts, find the whole.
Multi step problems = reasoning. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For example: I don’t know my 16 times tables, but I know my 10s and my 6s.</td>
<td>Open ended Identifying Prime Numbers on a 100s chart. Using 100 lollies, how many different ways can you make party bags? Problem Solving Strategies - After unpacking these thoroughly. Why did they use this.</td>
<td>Term 3 Week 1 and 2</td>
</tr>
<tr>
<td>I know what a factor is. I know what a multiple is. I know what prime and composite numbers are in relation to the whole. I have 42 cookies, I need to put 7 cookies on each plate. How many plates do I need? I have 44 cookies, there are 7 cookies on each plate. How many plates do I need.</td>
<td>Term Four, Week 1-5</td>
<td></td>
</tr>
<tr>
<td>I understand that number patterns assist me with finding factors and multiples.</td>
<td>CFA as determined by the team. (ACARA examples) for example evidence of a continuing pattern that is consistently adding or subtracting the same number.</td>
<td></td>
</tr>
<tr>
<td>Learning Targets: - Increasing</td>
<td>I can: - create a sequence involving whole numbers, decimals and fractions</td>
<td></td>
</tr>
</tbody>
</table>

Problem Solving Strategies

- **Tool Box**
- What are the problem solving strategies?
- What do they look like?

- **Open ended**
- Identifying Prime Numbers on a 100s chart.
- Using 100 lollies, how many different ways can you make party bags?
- Problem Solving Strategies - After unpacking these thoroughly. Why did they use this.

Learning Targets

- **Increasing**

Adding and subtracting

- Simple factors and multiples (skip counting, repeated addition/subtraction)
- Patterns can appear in many ways

CFA as determined by the team. (ACARA examples)

Term Four, Week 1-5

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE= Number and Algebra, RED= Measurement and Geometry, GREEN= Statistics and Probability.
ELSP MATHEMATICS YR 5

<table>
<thead>
<tr>
<th>Learning Target</th>
<th>For example:</th>
<th>Pre test and post test to determine differentiation</th>
<th>BODMAS examples and modelling of this type of more complex operations, where there is large variety of operations on both sides of the = sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>- decreasing</td>
<td>knowledge of number relationships.</td>
<td>Begin with a specific number or count by a specific number.</td>
<td>- describe a sequence involving whole numbers, decimals and fractions and explain my reasoning and understanding</td>
</tr>
<tr>
<td>- fractions</td>
<td>I can use the problem solving strategies - To working backwards to solve problems. Guess and Check etc...</td>
<td>Lots of variation in the appearance of the patterns.</td>
<td>- continue number patterns using fractions, decimals and whole numbers. (R)</td>
</tr>
<tr>
<td>- decimals</td>
<td>2 lots of a number is equal to 4 lots of 6. Solves number sentences such as $(12 \times 7) = 3 \times \square$ & $3 \div 4 = 15 \div \square$</td>
<td>Four proficiencies of operations.</td>
<td></td>
</tr>
<tr>
<td>- whole numbers</td>
<td>I can show how number sentences balance.</td>
<td>Equal means they balance on each side. 'fulcrum'</td>
<td></td>
</tr>
<tr>
<td>- I can use</td>
<td></td>
<td>Pre test and post test to determine differentiation</td>
<td></td>
</tr>
<tr>
<td>estimation as a</td>
<td></td>
<td>Examples of question types:</td>
<td></td>
</tr>
<tr>
<td>strategy</td>
<td></td>
<td>$99 / \square = 1 \times 11$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\square \times 2 = \square / 2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open ended: using a think board with an answer in the middle and 4 different equations around it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Make a number sentence that fits:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Term Four, Week 6, 7, 9, 10</td>
<td></td>
</tr>
</tbody>
</table>

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE= Number and Algebra, RED= Measurement and Geometry, GREEN= Statistics and Probability.
<table>
<thead>
<tr>
<th>I can read and compare 12- and 24-hour time systems and convert between them</th>
<th>Learning Target:</th>
<th>I can show there are 24 hours in a day. I know antemeridian and postmeridian.</th>
<th>CFA as determined by the team. (ACARA examples)</th>
<th>Term Four, Week 4-7, Week 9</th>
<th>I can solve worded problems using a variety of time intervals and 24 hour time patterns etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can use estimation as a strategy to convert between 12- and 24-hour time.</td>
<td>I can use estimation as a strategy</td>
<td>Simple addition and subtraction facts using effective strategies. Eg jump strategy.</td>
<td>Plan a day using 24 hour time.</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>I can tell the time in 24 hour mode.</td>
<td>I can tell the time in 24 hour mode.</td>
<td>Be able to tell the time.</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>I can determine elapsed time using a 12 and 24 hour clock.</td>
<td>I can determine elapsed time using a 12 and 24 hour clock.</td>
<td>Revise elapsed time.</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I can use a grid reference system to describe locations. Describe routes using landmarks and directional language.</th>
<th>Learning Target:</th>
<th>To use maps and grids to describe and interpret routes and locations. Use: Street names, direction travelled (NESW), which way to turn,</th>
<th>CFA as determined by the team. (ACARA examples)</th>
<th>Term Three, Week 5-8</th>
<th>I can read and interpret more complex maps and grids beyond the core Essential Learning.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can use estimation as a strategy</td>
<td>I can use estimation as a strategy</td>
<td>I can use multimodal resources: Google Maps, VicRoads/Melways, Compass, Illustrated Map with scale,</td>
<td>Design a route around the city. (As per our city excursion)</td>
<td>****</td>
<td>I can design more complex maps and plan directions for these and direct others to follow these instructions.</td>
</tr>
<tr>
<td>I can give and follow directions using</td>
<td>I can give and follow directions using</td>
<td>North, East, South West. How to read a grid: A1, B2, C2, etc... Left and Right is subjective.</td>
<td>Display it using directional language. Also show the same route on google maps.</td>
<td>****</td>
<td>****</td>
</tr>
</tbody>
</table>

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE = Number and Algebra, RED = Measurement and Geometry, GREEN = Statistics and Probability.
ELSP MATHEMATICS YR 5

<table>
<thead>
<tr>
<th>formal directional language.</th>
<th>Ipad/ iPhone, GPS (NavMan, TomTom)</th>
<th>I can describe the step by step directions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- I can use Google maps to solve real life mapping activities.</td>
<td>I can use more specific vocabulary: North NorthEast, North NorthWest, South SouthEast, South SouthWest.</td>
<td>Estimate distance travelled AND estimate the distance ‘as the crow flies’.</td>
</tr>
</tbody>
</table>

I can estimate, measure and compare angles using degrees.
Construct angles using a protractor.

Learning Targets:
- I can use estimation as a strategy
- I can measure angles using a protractor
- I can compare angles
- I can measure angles
- I can construct specific angles.
- I can calculate a missing angle in a

| I can estimate the size and type of everyday angles.
For example: That book shelf has a 90 degrees angle.
The Danger Zone in footy is about 45 degrees from the goal square.
| I know what an angle is.
For every angle there is an related opposite angle.
Arms(Lines), Vertix
A full rotation is 360 degrees.
How to divide 360 into parts.
Obtuse
Acute
CFA as determined by the team.
(ACARA examples)
Rob V What is my Angle activity?
Draw/create something and identify the angles and the size of them.
Term Three, Week 1-4
| Investigate conditions for two lines to be parallel and solve simple numerical problems using reasoning.
Demonstrate that the angle sum of a triangle is 180° and use this to find the angle sum of a quadrilateral.
| I can:
- identify the side and angle properties of

*Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.
BLUE= Number and Algebra, RED= Measurement and Geometry, GREEN= Statistics and Probability.*
ELSP MATHEMATICS YR 5

triangle and a quadrilateral
- I can use a protractor and digital technologies to measure and construct angles.
- What is the purpose of angles in real life? What would be the best/optimal angle to enhance the purpose? For example: Shape of roofs in Northern and Southern Hemisphere.

Learning Target:
- I can list outcomes of chance experiments involving equally likely outcomes and represent probabilities of those outcomes.

I can list outcomes of chance experiments involving equally likely outcomes and represent probabilities of those outcomes.	Before using any statistics, determine the probability variations.	Chance has no memory, if the event keeps returning to the initial.	CFA as determined by the team. (ACARA examples)	Term Three Week 9, 10 Term Four Week 1, 2, 3
I can use estimation as a strategy	I can determine the possible results and select the best strategy to list possible outcomes: Tree Diagram Table Organised & systematic list	Identify everyday events where one event cannot happen if the other happens	Design an experiment, determine all the possibilities, collect data and display.	I can:
- I can systematically deduce the probability of an outcome by using the most appropriate strategy	I can represent the statistics/data using fractions, decimals and percentages.	Simple/Common fractions Probability lines (ranging from zero to one)	CFA as determined by the team. (ACARA examples)	- represent probabilities as simple ratios and fractions

Chance Language:
- Improbable, Probably, definitely, possible, impossible, likely, unlikely etc.

<table>
<thead>
<tr>
<th>I can:</th>
<th>CFA as determined by the team. (ACARA examples)</th>
<th>Design an experiment, determine all the possibilities, collect data and display.</th>
<th>CFA as determined by the team. (ACARA examples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- represent probabilities as simple ratios and fractions</td>
<td>- specify, list and communicate probabilities of events using fractions, decimals and percentages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE = Number and Algebra, RED = Measurement and Geometry, GREEN = Statistics and Probability.
ELSP MATHEMATICS YR 5

<table>
<thead>
<tr>
<th>0 to 1</th>
<th>I can use the outcomes to determine the probability/chance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 1</td>
<td>To understand that the probability of an event is a number between 0 and 1 that is a measure of the chance that a given event will occur. A probability of 0 indicates impossibility and that of 1 indicates certainty. A probability of (\frac{1}{2}) indicates an even chance of the event occurring.</td>
</tr>
</tbody>
</table>

*Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE= Number and Algebra, RED= Measurement and Geometry, GREEN= Statistics and Probability.