What is it that we want our students to know, understand, do and communicate KUDCO?

<table>
<thead>
<tr>
<th>Year Level: Four</th>
<th>Semester: Two</th>
<th>Subject: Mathematics</th>
<th>Team Members: Melina Shenoy, Kim Cleghorn, Claire Crozier, Jeanette Shine & Donna Lourensz</th>
</tr>
</thead>
</table>

Essential Learning

Fractions (new EL)
- I can count by unit fractions using all three models - area, length and quantity.

Learning Targets:
- I can:
 - count by quarters, halves, thirds, fifths and tenths,
 - locate fractions on number line,
 - count by unit fractions including mixed numbers,
 - recognise common equivalent fractions in familiar contexts.

Example-Rigor

- I can place various fractions on a number line.
- I can count beyond one by fractions.
- I can represent fractions larger than one as a mixed number.
 eg. 1 ½
- I can represent common fractions and equivalent fractions using: area,
 length
- I can identify common equivalent fractions. - ½, 2/4, 3/6.
- I can identify quarters, halves and thirds.
- I can find a simple fraction of an area, length and quantity.
- I can record a fraction as a numerator and denominator.
- I can read and use a fraction wall.
 Understand:
 - area
 - length

Prior Skills Needed

- What prior knowledge, skills and/or vocabulary are needed for a student to master this essential learning?

Common Assessments

- CFA Pre-Test for extension students.
- Post - Test from previous Equivalent Fraction unit to be used as pre-assessment data.
- Post - Test
 - Think board (Area, Length, Quantity) reasoning to explain.
 - Van De Walle
 - Envision (Selected pieces modified by the team).

When taught?

- Term 3 Week 1-5

When will this essential learning be taught?

- I can provide examples when each model would be used in real life.
 - eg. Fraction of an area (grid, shape, array)
 - Fraction of a length (eg. Use a number line to show ⅕ of 25km).
 - Fraction of a quantity (10 horses. ⅖ are brown. How many are brown?)

Extension Skills

- I can explain the difference between these pairs of fractions (equivalent vs nonequivalent).

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE = Number and Algebra, RED = Measurement and Geometry, GREEN = Statistics and Probability.
<table>
<thead>
<tr>
<th>Length and quantity models.</th>
<th>I can use resources to determine equivalent fractions: - Fraction walls, cuisenaire rods, ● common fractions (parts, whole, collection) The larger the denominator, the smaller the fraction piece.</th>
<th>Fractions of shapes on a grid Fractions on a line Fractions of a group</th>
<th>I can simplify fractions using a common factor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can represent equal fractions and decimals in different ways: area, lengths, quantity. - area model</td>
<td>I can write and identify simple fractions. I know fractions represent equal parts I understand the area, length and quantity models to identify fractions.</td>
<td>CFAs Anecdotal notes</td>
<td>Term 3 Week 6 - 8 I can link decimals and fractions and model their relationship. I can link decimals and percentages and model their relationship. I can link fractions, decimals, percentages and model their relationship. I understand connections between tenths and hundredths and decimal numbers. I can explain that decimals and percentages can be found through division eg. 1 divided by 4 is 0.25 or 25%.</td>
</tr>
</tbody>
</table>

(Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester. BLUE= Number and Algebra, RED= Measurement and Geometry, GREEN= Statistics and Probability.
ELSP MATHEMATICS YR 4

| (Money) | I can solve problems involving purchases with and without the use of digital technology. **Learning Targets:**
| I can: |
| - add and subtract values of money |
| - round numbers to the nearest 5 cent. |
| - calculate change to the nearest five cents. |
| | I can place ¾ on a number line and can also place 0.75. |
| | I can make simple connections between fractions, percentages and decimals |
| eg. ¼ = 0.25 = 25%, ½ = 0.50 = 50% |
| | I can use the halving strategy to find fractions, decimals and percentages. |
| eg. ½ /2 = ¼ or 25% |
| eg. 0.5 / 2 = 0.25 or 25% |
	I can round to the nearest 5c. (74c rounds to 75c, 72c rounds to 70c, 78c rounds to 80c)
	I can explain the role of the decimal point in monetary values.
	I can problem solve using real life contexts.
- With a set amount of money students purchase items and round total value and change to the nearest 5 cents.	
I can round to the nearest 5c.	
Estimating.	
Problem solving skills.	
I can read monetary amounts and explain their values.	
Renaming, addition and subtraction.	
I can explain that cents are part of a dollar.	
Worded problem.	
Buy products, how much was it and how much change. (given an amount of money and a number of products they have to buy) - differentiate amounts given	

Term 4 Week 1-2

Creating a budget or a plan to spend a certain amount of money.

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE= Number and Algebra, **RED**= Measurement and Geometry, **GREEN**= Statistics and Probability.
Units of Measurement

Learning Targets:

I can:
- Estimate and measure mass
- Capacity
- Temperature

I can use the appropriate instrument to measure units of measurement and explain why it is the appropriate instrument.

I know:
- The order of: mm, cm, m, km, g, kg, ml, L, degrees celsius.
- Can use a scale (e.g., balance scale, bathroom scale).
- Read a thermometer.

Hands on activities incorporating the use of scaled instruments.

Term 4, weeks 3-4

I can convert between units of measurement.

I can provide examples of how they are linked and related.

I can use scaled instruments to measure units of measurement.

Shapes within Shapes

I can compare and describe how common shapes can be combined to make other common shapes.

I can describe the features of 2D shapes.

I can find shapes within other shapes (e.g., 2 triangles = 1 square/5 triangles = 1 pentagon, trapezium = 1 rectangle + 2 triangles/1 square + 2 triangles).

I can identify, name, create, and draw basic 2D shapes:
- square, triangle, rectangles

CFAs Anecdotal Notes

Term 3, weeks 1-3

I can identify 2D shapes within 3D shapes.

I can use shape transitions (flips, slides and turns) to combine shapes to create other shapes.

Symmetry/Asymmetry

I can create, identify and describe symmetrical and asymmetrical patterns,

I can identify horizontal, vertical and diagonal lines of symmetry.

I can identify multiple lines of symmetry.

I can explain if an image or object is symmetrical or not.

I can show a line of symmetry on a shape.

CFAs Anecdotal Notes

Term 4, weeks 5 - 7

I can identify rotational symmetry.

I can create images with/visualise rotational symmetry.

Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE = Number and Algebra, **RED** = Measurement and Geometry, **GREEN** = Statistics and Probability.
<table>
<thead>
<tr>
<th>Learning Targets:</th>
<th>I can identify symmetry and asymmetry in natural and man made objects:</th>
<th>I know what a tessellating pattern is (a repeated pattern of shapes).</th>
</tr>
</thead>
<tbody>
<tr>
<td>with and without digital technologies.</td>
<td>- Lines of symmetry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tessellating shapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Natural/ manmade</td>
<td></td>
</tr>
</tbody>
</table>

(\textit{Time})

<table>
<thead>
<tr>
<th>Learning Targets:</th>
<th>I understand:</th>
<th>Counting on - working out the difference between two time allocations.</th>
<th>Anecdotal notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can use am and pm and convert between units of time.</td>
<td>- am and pm</td>
<td>I know that there are 24 hours in a day, 60 minutes in an hour.</td>
<td>Pre-Test</td>
</tr>
<tr>
<td>Learning Targets:</td>
<td>- The link between units of time</td>
<td>I know the features of an analogue clock.</td>
<td>Post- Test</td>
</tr>
<tr>
<td>Time duration/</td>
<td>- Time duration/</td>
<td>- the long hand = minutes</td>
<td>CFAs</td>
</tr>
<tr>
<td></td>
<td>elapsed (jump strategy)</td>
<td>- the shorthand = hours</td>
<td></td>
</tr>
<tr>
<td>I understand that 12pm is in the afternoon.</td>
<td>I can calculate elapsed time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I can count on by hours and minutes (to a multiple of 5) eg. 3 o’clock to 3:15 = 15 minutes</td>
<td>eg. I began an activity at 11:00am. It finished at 3pm. How long did it take? (11:15am to 3:00pm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

\textbf{BLUE=} Number and Algebra, \textbf{RED=} Measurement and Geometry, \textbf{GREEN=} Statistics and Probability.
I can convert between units of time.
 eg. I know that 2 days is 48 hours.

I know quarter past, half past, quarter to and o’clock.

I can tell time to the nearest minute.

I can collect data using a variety of methods (table, survey, tally, ICT, observations).

I can present my data using an appropriate display e.g. column, bar, dot, pie, line graphs, table (drawn, Excel, ICT program).

I can include the basic features on a data graph.

Create graphs given the key and scales.

Term 4, Weeks 5-7

I understand the purpose of a survey and how to graph data so that it is EASIER to interpret than just numbers

I can collect, display and interpret data to construct a variety of displays:
 - tables
 - columns, dot, pie, bar, line graphs.

I understand that different graphs can provide different information about the same data.

I can list different data collection methods (tally, table, survey, observations).

Anecdotal notes CFAs (Students choose and create best display for given data).

Term 4, weeks 5-6

I can identify which graph best meets my needs.

I can compare and contrast the effectiveness of

*Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE = Number and Algebra, RED = Measurement and Geometry, GREEN = Statistics and Probability.
I can:
- draw conclusions from data displays.
- I can use the data to draw conclusions about the topic.
- I can interpret given data.
- I can interpret keys and scales from data displays.

I can list different data displays (column, bar, pie, line, pictograph)
- I can record data on displays (column, bar, pictograph)

I can compare and contrast the effectiveness of different displays.

*Working in Collaborative teams, examine all relevant documents, school scope and sequence, regional documents and AusVELS, and then apply the criteria of endurance, leverage and readiness to determine which standards are essential for all students to master. Remember, less is more. For each standard selected, complete the remaining columns. Complete the chart by the second or third week of each term/semester.

BLUE= Number and Algebra, RED= Measurement and Geometry, GREEN= Statistics and Probability.